Nondeterministic Finite Automata

See Section 2.3 of the text

Consider the following automaton:

This is called a "Nondeterministic Finite Automaton", or NFA because in state S there are two options on input 0 : we can stay in state S or transition to state T .

In general, an NFA is a quintuple $(\mathrm{Q}, \Sigma, \delta, \mathrm{s}, \mathrm{F})$ where $\mathrm{Q}, \Sigma, \mathrm{s}$, and F have the same meanings as in a DFA, and for each state t and letter a in $\Sigma, \delta(\mathrm{t}, \mathrm{a})$ is a set of states.

We say that such an automaton accepts string $\mathrm{w}=\mathrm{w}_{0} \mathrm{w}_{1} . . \mathrm{w}_{\mathrm{n}-1}$ if there is a sequence of states $s=t_{0} t_{1} . . t_{n}$ where each t_{i+1} is in $\delta\left(t_{i}, w_{i}\right)$ and t_{n} is final.

The automaton above accepts $(0+1)^{*} 01$, which is the set of all strings of 0's and 1's that end in 01.

NFAs are often easier to design than DFAs.

Example: Construct an NFA that accepts strings containing 101.

Example. Find an NFA that accepts strings containing either 101 or 110.

First Theorem of the Course: For any NFA there is a DFA accepting the same language. So the language accepted by any NFA is regular. Proof: Start with NFA ($\Sigma, \mathrm{Q}, \delta, \mathrm{s}, ~ F)$. Construct DFA ($\left.\Sigma, \mathrm{Q}^{\prime}, \delta^{\prime}, s^{\prime}, F^{\prime}\right)$:

1. Q^{\prime} consists of sets of states from Q.
2. $s^{\prime}=\{s\}$
3. For each state $\mathrm{P}=\left\{\mathrm{q}_{0} \ldots \mathrm{q}_{\mathrm{k}}\right\}$ in Q^{\prime} and each a in Σ, make a new state $\mathrm{P}^{\prime}=\mathrm{U}_{i=0}^{k} \delta\left(q_{i}, a\right)$. Then $\delta^{\prime}(\mathrm{P}, \mathrm{a})=\mathrm{P}^{\prime}$.
4. F^{\prime} consists of all of the states in Q^{\prime} that contain a state in F .

In English, the DFA models all of the states where we could be in the NFA.
construction:

NFA:

DFA:

Note that this is equivalent to

Example: Find a DFA that accepts all strings ending in 01 or 10

Now, we need to prove that the NFA and DFA accept the same language.

1. Suppose $w=a_{0} a_{1} \ldots . a_{n-1}$ is a string accepted by the NFA. Then there is a sequence of NFA states

$$
\begin{aligned}
& q_{0}=s \\
& q_{1} \in \delta\left(q_{0}, a_{0}\right) \\
& q_{2} \in \delta\left(q_{1}, a_{1}\right) \\
& \text { etc. with } q_{n} \text { in } F .
\end{aligned}
$$

Well, in the DFA $\delta^{\prime}\left(\{s\}, a_{0}\right)=Q_{1}$, where $q_{1} \in Q_{1}$
$\delta^{\prime}\left(Q_{1}, a_{1}\right)=Q_{2}$, where $q_{2} \in Q_{2}$ and so forth.
Ultimately this produces DFA state Q_{n} with $q_{n} \in Q_{n}$ and $q_{n} \in F$, so $\mathrm{Q}_{\mathrm{n}} \in \mathrm{F}^{\prime}$.
This means the DFA accepts w.
2. On the other hand, suppose $w=a_{0} a_{1} \ldots a_{n-1}$ is a string accepted by the DFA. So there is a sequence of states

$$
\begin{aligned}
& \mathrm{Q}_{0}=\{\mathrm{s}\} \\
& \mathrm{Q}_{1}=\delta^{\prime}\left(\mathrm{Q}_{0}, \mathrm{a}_{0}\right)
\end{aligned}
$$

etc. where Q_{n} contains an element of F.
Note that there is a path on a_{0} from s to every state in Q_{1}. $\mathrm{Q}_{2}=\delta^{\prime}\left(\mathrm{Q}_{1}, \mathrm{a}_{1}\right)$, so every state in Q1 can be reached on a1 from a state in Q. This means there is a path on $a_{0} a_{1}$ from s to every state in Q_{2}, and so forth. In the end there is a path on input $w=a_{0} a_{1} \ldots . a_{n-1}$ from s to every state in Q_{n}, and one of those is an element of F, so the NFA also accepts w.

This completes the proof.

